NEWS RELEASE

May 18, 2015
FOR IMMEDIATE RELEASE

Janssen Supply Chain Expands Collaboration with Rutgers School of Engineering with $6 Million Funding Arrangement to Implement Continuous Manufacturing Initiative

Broadening a strategic collaboration with the Engineering Research Center for Structured Organic Particulate Systems (C-SOPS) to help create the future of advanced manufacturing

Piscataway, N.J. – Janssen Supply Chain has furthered its strategic partnership with the Rutgers University School of Engineering by providing over $6 million to expand ongoing research efforts supporting the company’s introduction of continuous manufacturing techniques for pharmaceuticals.

The funds from Janssen, part of the Janssen Pharmaceutical Companies of Johnson & Johnson, will increase research and development efforts at the Rutgers Engineering Research Center for Structured Organic Particulate Systems (C-SOPS) over the next several years. The center is helping Janssen transition several products to continuous manufacturing, including developing a specially designed manufacturing line at a Janssen facility in Puerto Rico.

“We are very pleased to broaden our collaboration with Janssen on this important project and look forward to expanding collaborations with other pharmaceutical companies globally,” said Fernando J. Muzzio, director, National Science Foundation/Engineering Research Center on Structured Organic Particulate Systems and professor II, chemical and biochemical engineering. “Continuous manufacturing represents the future of advanced pharmaceutical manufacturing and will produce significant improvements in efficiency, safety, cost and speed to market. Our center is now better positioned than ever to serve the scientific community, the pharmaceutical industry and the regulatory agencies.”

The Rutgers ERC, established nine years ago with funding from the National Science Foundation and a consortium of more than 40 companies within the pharmaceutical sector, is the world’s largest academic-based research organization dedicated to modernizing pharmaceutical manufacturing of solid oral dose medications.

The funding from Janssen represents a significant expansion of an arrangement that began five years ago and that focuses on technical development of continuous processing, an emerging advanced pharmaceutical manufacturing method.
“Our collaboration with the Rutgers Engineering School has been very productive in helping us to prepare for the future in delivering the highest quality medicines in the most efficient way,” said Mauricio Futran, vice president, advanced technology, Janssen Manufacturing & Technical Operations. “We look forward to continuing to work closely with Rutgers and with regulators on the advancement and implementation of this important manufacturing technology.”

As part of this collaboration, Rutgers engineers designed and built one of the first full production-scale continuous direct compression solid oral dosage manufacturing facilities, which was used as the model for the Janssen production line in Puerto Rico and is also being used as a model by other pharmaceutical manufacturers. This direct compression tableting line, located at the engineering school campus in Piscataway, has now been expanded to also include wet and dry granulated products and can accommodate tests of multiple production routes under automated control for optimal product and process design.

Continuous manufacturing offers a number of significant benefits, and over time, is likely to replace conventional batch processing for many products. The pharmaceutical industry has been slow to adopt this technology, which is the standard in many other industries. However, in recent years the pace has accelerated following explicit support from the FDA for these processes.

Since the center’s founding, researchers at Rutgers have worked in collaboration with industry and its partner universities Purdue, NJIT, and the University of Puerto Rico to develop an understanding of the science that goes into designing and operating continuous pharmaceutical manufacturing systems for solid oral dosage forms.

The Rutgers group has been researching a wide variety of areas, including powder processing and materials properties, process modeling and control, and in-line process analytical technology in order to design and implement robust and reliable manufacturing processes that meet the quality standards of a regulated industry at lower cost.

The Rutgers center offers state-of-the-art capabilities for research, experience in innovative processes and products, extensive experience and capabilities in process modeling and strong relationships with the FDA.

“The center is helping manufacturers meet new regulatory requirements by using good science and state-of-the-art research to promote and maintain high standards of product safety and efficacy,” Muzzio said. “Our ongoing collaboration with Janssen allows us to continue to increase product quality and lower process risk and provide science-based data to the FDA and other regulatory agencies to improve the way pharmaceuticals products are manufactured.”

About C-SOPS
The Center for Structured Organic Particulate Systems (C-SOPS) is the world’s largest academic-based research organization dedicated to modernizing pharmaceutical manufacturing and dosage forms. The Center brings together leading researchers from four major universities to work closely with industry leaders and the FDA to achieve these goals. Headquartered at Rutgers University, C-SOPS partners include the New Jersey Institute of Technology, Purdue University, and the University of Puerto Rico at Mayaguez.
About Rutgers University School of Engineering
Established in 1864, the School of Engineering at Rutgers, The State University of New Jersey, is home to educational opportunity and innovation, pursuing work of enormous relevance to society and the economy through world-class research and important industry partnerships. With seven academic departments representing key engineering disciplines, world-renowned faculty, and groundbreaking research centers, the School of Engineering currently enrolls approximately 4,500 undergraduate and graduate students, including doctoral students, and generates more than $60 million in research expenditures annually. With a degree that is recognized around the world as comprehensive and leading-edge, the School of Engineering is training the next generation of innovators across a broad spectrum of professions.

For more information, go to ercforsops.org.

Contact:
Douglas B. Hausner, Ph.D.
Associate Director for Industrial Relations and Business Development
ERC for Structured Organic Particulate Systems
Rutgers University, Department of Chemical and Biochemical Engineering
Doug.Hausner@Rutgers.edu
Office: (848) 445-5886; Cell (215) 962-2746

Diane Reed
Director, Communications and Marketing
Rutgers University School of Engineering
diane.reed@rutgers.edu
Office: (848)-445-7359; Cell: (732) 421-8738

#